Rapid Synthesis of Well-Defined Polyacrylamide by Aqueous Cu(0)- Mediated Reversible-Deactivation Radical Polymerization
نویسندگان
چکیده
Atom transfer radical polymerization (ATRP) of acrylamide (AM) has proved challenging, typically exhibiting low conversions and broad molecular weight distributions (MWDs). Herein, we report the synthesis of well-defined polyacrylamide (both homo and block copolymers) via aqueous copper(0)mediated reversible-deactivation radical polymerization (Cu(0)RDRP), exploiting the in situ disproportionation of Cu(I)Br in the presence of Me6Tren to yield insoluble Cu(0) and Cu(II)Br2 which acts as a deactivator. Careful optimization of the levels of Cu(I)Br and Me6TREN allowed for the synthesis of polyacrylamide of a range of molecular weights (DPn = 20−640) proceeding to quantitative conversion within just a few minutes (typically full conversion is attained within 15 min of reaction time) and exhibiting narrow MWDs (Đ as low as 1.09), which represents a significant improvement over transitional-metalmediated approaches previously reported in the literature. This optimized approach was subsequently utilized to perform in situ chain extensions and block copolymerizations with hydroxyethyl acrylamide, yielding block copolymers of low dispersity and quantitative monomer conversions in a time frame of minutes.
منابع مشابه
Insights into relevant mechanistic aspects about the induction period of Cu(0)/Me(6)TREN-mediated reversible-deactivation radical polymerization.
There is a controversial debate about the mechanism of the Cu(0)-catalyzed radical polymerization. Herein, a comparative analysis of a series of reactions catalyzed by different valent copper shows that the induction period and the subsequent autoaccelerated polymerization of a Cu(0)/Me6TREN-catalyzed system originate from the accumulation of soluble copper species, and Cu(I) is still a powerfu...
متن کاملSynthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization
This review summarizes the state of the art in the synthesis of well-defined glycopolymers by Reversible-Deactivation Radical Polymerization (RDRP) from its inception in 1998 until August 2012. Glycopolymers architectures have been successfully synthesized with four major RDRP techniques: Nitroxide-mediated radical polymerization (NMP), cyanoxyl-mediated radical polymerization (CMRP), atom tran...
متن کاملWell-defined PDMAEA stars via Cu(0)- mediated reversible deactivation radical polymerisation
The Cu(0)-mediated reversible deactivation radical polymerisation of N,N’dimethylaminoethyl acrylate in DMSO and IPA at ambient temperature using Cu(0) wire is investigated. Tetra-functional and octa-functional initiators were utilised to facilitate the synthesis of well-defined PDMAEA star homo and block copolymers with a range of molecular weights (Mn ~ 5000-41000 g mol ). Both solvents demon...
متن کاملReversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives.
Mediation of reversible deactivation radical polymerization (RDRP) by cobalt(II) complexes (CMRP) is the most highly developed subcategory of organometallic mediated RDRP (OMRP). Attention was paid to CMRP for its unusual high efficiency observed for the control of acrylate and vinyl acetate polymerization that produced homo- and block copolymers with narrow molecular weight distribution and a ...
متن کاملMetal Free Reversible-Deactivation Radical Polymerizations: Advances, Challenges, and Opportunities
A considerable amount of the worldwide industrial production of synthetic polymers is currently based on radical polymerization methods. The steadily increasing demand on high performance plastics and tailored polymers which serve specialized applications is driven by the development of new techniques to enable control of polymerization reactions on a molecular level. Contrary to conventional r...
متن کامل